Back paper exam Real Analysis I Time: 3hrs Total Marks: 50 Answer all and each question is worth 10 Marks Total Marks 50

- 1. Let (a_n) and (b_n) be two convergent sequences. Then prove that
 - (i) $\lim a_n + \lim b_n = \lim (a_n + b_n);$
 - (ii) $\lim ca_n = c \lim a_n$ for any $c \in \mathbb{R}$;
 - (iii) $\lim a_n \lim b_n = \lim (a_n b_n)$ and
 - (iv) $\lim a_n \lim b_n = \lim a_n b_n$.
- 2. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and $x \in \mathbb{R}$. Prove that $f(x_n) \to f(x)$ for any sequence (x_n) converging to x.

(c) Let $f:[a,b] \to \mathbb{R}$ be a continuous one-one function. Prove the f is strictly monotone.

- 3. (a) Let f: [a, b] → R be a continuous function. Prove that there exists x, y ∈ [a, b] such that f(x) ≤ f(t) ≤ f(y) for all t ∈ [a, b].
 (b) Let Ø ≠ C ⊂ R and define f: R → R by f(t) = inf_{x∈C} |x t| for t ∈ R. Show that f is continuous on R.
- 4. (a) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function with derivative f' and f' is continuous. Suppose f'(a) > 0 for some $a \in \mathbb{R}$. Then there is a $\delta > 0$ such that f is strictly increasing in $(a \delta, a + \delta)$.

(b) Suppose $f:[a,b] \to \mathbb{R}$ be a differentiable function. Prove that f' has IVP.

5. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with derivative f'. Suppose there is a $c \in (0, 1)$ such that |f'(x)| < c for all $x \in \mathbb{R}$. Prove that there is a unique x_0 such that $f(x_0) = x_0$ and $f^n(x) \to x_0$ as $n \to \infty$ for all $x \in \mathbb{R}$.

(b) Let $f:[a,b] \to [c,d]$ be a bijection and $x_0 \in [a,b]$. Suppose f is differentiable at x_0 , f^{-1} is continuous at $y_0 = f(x_0)$ and $f'(x_0) \neq 0$. Prove that f^{-1} is differentiable at y_0 and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.